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Abstract6

These notes contain a brief practical introduction to doing density functional7

theory calculations for crystals using the open source Quantum Espresso soft-8

ware. The level is aimed at graduate students who are studying condensed9

matter or solid state physics, either theoretical or experimental.10
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1 Introduction: What is Density Functional Theory?42

Any material on earth, whether in crystals, amorphous solids, molecules or yourself, con-43

sists of nothing else than a bunch of atoms, ions and electrons bound together by electric44

forces. All these possible forms of matter can be explained by virtue of one simple equation:45

the many-particle Schrödinger equation,46

ih̄
∂

∂t
Φ(r; t) =

− N∑
i

h̄2

2mi

∂2

∂r2
i

+

N∑
i<j

e2ZiZj
|ri − rj |

Φ(r; t). (1)

Here Φ(r; t) is the many-body wavefunction for N particles, where each particle has its47

own mass mi, charge Zi and position ri. The only interaction is the Coulomb interaction48

e2/r.49

Despite its apparent simplicity, Eq. (1) is notoriously difficult to solve. This is where50

density functional theory (DFT) comes in. Using a set of reasonable physical approxima-51

tions we can simplify the many-particle Schrödinger equation to something that we can52

actually solve numerically.53

1.1 Born-Oppenheimer approximation54

The first approximation arises from the physical problem we want to study: the ground55

state of a collection of interacting ions and electrons. Because even the lightest ion is more56

than a thousand times heavier than an electron, we will forget about the dynamics of the57

ions all-together. This is known as the Born-Oppenheimer approximation. We then write58

the time-independent Schrödinger equation for a collection of N electrons subject to the59

electric potential created by the fixed ions,60  N∑
i

(
− h̄2

2m

∂2

∂r2
i

+ V (ri)

)
+

N∑
i<j

e2

|ri − rj |

Ψ(r) = E0Ψ(r) (2)

where ri are the positions of the electrons. The potential V (ri) is created by the charged61

ions,62

V (ri) = −
∑
j

e2Zj
|ri −Rj |

(3)

where R is the (static) positions of the ions and Zj their charge. Note that the above63

Hamiltonian – the left hand side of Eq. (2) – contains three terms: the kinetic energy (T ),64

the potential energy (V ) and the interaction energy (U).65

The electronic density is obtained by integrating out all electron degrees of freedom66

exact one,67

n(r) =

∫
d3r2 · · · d3rN |Ψ(r1 · · · rn)|2 . (4)

The total potential energy V is just given by the integral over the potential V (r) times68

the density,69

V =

∫
d3rV (r)n(r). (5)
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1.2 Hohenberg-Kohn theory70

Assume we found a solution of Eq. (2), with ground state energy E0 and a certain electronic71

density n(r). The strength of the Coulomb interaction and the mass of an electron are72

constants of nature, so the only input that can possibly influence the electronic density73

n(r) and the energy E0 of our ground state is our choice of potential V (r). In other words,74

the ground state energy is a functional of the input potential,75

E0[V (r)] = FE [V (r)] (6)

A functional is nothing else than a function whose input is another function; in this case76

the functional F takes as input the electric potential generated by the ions and outputs77

the ground state energy based on Eq. (2).78

At first this results seems counterintuitive. After all, the ground state energy clearly79

contains the kinetic energy T , the interaction energy U and the potential energy. Only80

the latter term explicitly depends on the potential. We can thus write the ground state81

energy in terms of a separate functional for the kinetic and interaction energy, and the82

potential energy83

E[n(r)] = F ′E [V (r)] +

∫
d3rV (r)n(r) (7)

Hohenberg and Kohn [1] came to the elegant insight that the potential V (r) and elec-84

tronic density n(r) are conjugate variables. Other conjugate variables you may know are85

for example pressure and volume in thermodynamics or momentum and position in clas-86

sical physics. The fact that the potential V (r) and the density n(r) are conjugate means87

you can equally well describe any solution of Eq. (2) using the potential or the density.88

Formally known as a Legendre transform (in the same way you go from the Hamiltonian89

to the Lagrangian formulation of classical mechanics), we can change the functional of Eq. 790

to depend on the density n(r) rather than the potential V (r). This is the Hohenberg-Kohn91

theorem: there exists a universal functional of electronic density, F [n(r)], such that for92

the correct density n(r) it provides the ground state energy of Eq. (2),93

E[n(r)] = F [n(r)] +

∫
d3rV (r)n(r). (8)

Knowing this functional, for any given potential V (r) we minimize the right hand side by94

checking all possible electronic density distributions.95

There are only two minor problems. We don’t know what this functional looks like.96

And even if we did, we don’t know how to find the right electronic density.97

1.3 Approximating the functional98

The unknown functional F [n(r)] should describe the kinetic and interaction energy of a99

system described by Eq. 2. Even though we cannot find its exact shape, we can look at100

its shape in some limiting cases that we can solve.101

We know that a free homogeneous electron gas with density n has a ground state102

energy of103

E0 =
3h̄2

(
3π2
)2/3

10m
n

5/3
0 . (9)

For a slowly varying electronic density, we can approximate the kinetic energy contribution104

to the full functional F [n(r)] as the energy of Eq. (9) evaluated at each point separately,105

T0[n(r)] =
3h̄2

(
3π2
)2/3

10m

∫
d3r(n(r))5/3. (10)
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Furthermore, we know from perturbation theory that the lowest order energy contri-106

bution from Coulomb interactions is given by the Hartree term,107

UH[n(r)] =
e2

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
. (11)

It is natural to write out the full functional as containing the homogeneous electron gas108

term and the Hartree term. The remaining terms, though still unknown, should be small.109

This unknown part is conventionally called the exchange-correlation potential Exc[n(r)].110

The full Hohenberg-Kohn functional, including the potential energy, is thus111

EHK[n(r)] = T0[n(r)] +

∫
d3rV (r)n(r) + UH[n(r)] + Exc[n(r)]. (12)

We will later discuss some general choices of exchange-correlation functionals in Sec. 2.2.112

1.4 Kohn-Sham equation113

We replaced an intractable problem (solving Eq. (2)) with the task of minimizing an114

unknown functional F [n(r)] over infinitely many possible electronic densities n(r). In the115

previous section we already gave some first suggestions for the functional. But once we116

found it, how to find the right electronic density n(r)?117

Because the correct density minimizes the functional, we can find the functional by118

setting it’s derivative to zero,119

δF [n(r)]

δn(r)
= 0. (13)

Using the functional Eq. (12), we write out1
120

δT [n(r)]

δn(r)
+ V (r) +

∫
n(r′)

|r− r′|
d3r′ +

δExc[n(r)]

δn(r)
= 0. (14)

The idea of Kohn and Sham [2] was to treat this as if it is a single-particle problem. The121

first term represents the kinetic energy, and the remaining terms form the Kohn-Sham122

potential123

VKS(r) = V (r) +

∫
n(r′)

|r− r′|
d3r′ +

δExc[n(r)]

δn(r)
. (15)

The Kohn-Sham equation is the single-particle Schrödinger equation with the potential124

given by Eq. (15),125 (
− h̄2

2m

∂2

∂r2
+ VKS(r)

)
ψi(r) = εiψi(r). (16)

We solve these equations numerically, which is tractable because it’s just a linear differen-126

tial equation. The electronic density is obtained by occupying the N solutions ψi(r) with127

the lowest energy,128

n(r) =

N∑
i=1

|ψi(r)|2. (17)

Now the electronic density obtained this way can be used to calculate a new Kohn-Sham129

potential following Eq. (15). We continue this iterative procedure until we reach conver-130

gence.131

1There is a small subtlety included in this equation: the kinetic component of the functional T [n(r)]
should not be the one obtained for the free homogeneous noninteracting electron gas of Eq. (10), but the
one for a noninteracting gas subject to the Kohn-Sham potential.
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A final comment is in order: in the above derivation we completely ignored the spin132

of electrons. Of course, real electrons have spin so that you need that degree of freedom133

as well. This does not change anything fundamental about how to use the Kohn-Sham134

equation.135

1.5 Limitations136

We have reached the end-goal: using the Born-Oppenheimer approximation, with an ap-137

propriate choice of functional, we use the Kohn-Sham equations to find the ground state138

energy and electronic density of a system of interacting electrons and ions. This combi-139

nation of approximations and techniques is called density functional theory (DFT).140

Despite is sometimes shaky assumptions, DFT turned out to be a resounding success. A141

large majority of crystalline materials, many molecules and molecular structures have been142

explained using DFT. Walter Kohn – the man who was involved in both the Hohenberg-143

Kohn theory and the Kohn-Sham equations – received the Nobel Prize for DFT in 1998.144

Mainly because of this success, I assume, you want to learn DFT in this ToolBoX.145

However, let me briefly shed some clouds over DFT’s success.146

• A major limitation of DFT is that it is impossible to tell you the size of the errors147

that exist due to the assumptions. If you get a self-consistent solution, that is nice,148

but only a comparison with the experimental system will tell you whether it is a149

good solution.150

• The electronic properties of many materials can be described using band theory,151

meaning for every quasimomentum k we have a set of energies εn(k). The solutions152

of the Kohn-Sham equation Eq. (16) are commonly interpreted as these electronic153

bands. However, it is important to bear in mind that in principle there is no con-154

nection to the actual electronic energy levels in a material. It just turns out that, in155

many materials, the Kohn-Sham energies happens to be a good approximation.156

• As a corollary to the previous limitation: when using DFT for an insulator or semi-157

conductor, you can also compute the Kohn-Sham energy gap between the highest158

occupied and lowest unoccupied state. This is not the actual gap of the semicon-159

ductor or insulator. In practice, it turns out that DFT typically underestimates the160

real gap.161

• Note that even if we had the exact functional, solving the corresponding Kohn-Sham162

equations would not give you the exact solution for the ground state energy.163

• Because the Kohn-Sham equations describe non-interacting electrons, many materi-164

als with strong correlations cannot be described using DFT. In general, this is true165

for materials with partially filled d or f -orbitals; or materials with localized electrons.166

In particular, applying DFT to the class of high-temperature superconductors such167

as cuprates, pnictides, and heavy fermions is relatively unsuccessful.168

• Materials with ground state degeneracy – for example in the case of spontaneous169

symmetry breaking – are known to be difficult to compute using DFT.170

• There is some subtlety involved in choosing the right functional. Commonly, func-171

tionals become widely accepted because of a good overlap with experiments.172

A good book to learn more about the theoretical side of DFT is Ref. [3].173
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2 A Practical Guide174

DFT as introduced in the last section is a numerical technique – there are no analytical175

expansions or solutions. And like many modern numerical techniques, it is better to use176

an existing developed code than to write your own. There are numerous DFT software177

packages, both open source and payed. In this section we will outline the most important178

choices we need to make in order to start running some code.179

2.1 Wavefunction basis sets180

The core of any code consists of computing the solutions to the Kohn-Sham equation.181

Because this is a linear differential equation, we need to choose a basis over which we182

can expand the Kohn-Sham equation. In this way, we transformed the continuum differ-183

ential equation into a matrix equation, for which there are many known techniques for184

diagonalizing it.185

The two most popular choices of basis are plane waves (PW) and Gaussian type orbitals186

(GTO). If you are interested in the structure of molecules, the most logical basis set is187

GTO where you take a certain set of polynomials multiplied by a Gaussian envelope, to188

make sure the electronic density remains close to the ions.189

For crystals, on the other hand, the most logical basis set is plane waves ψ(k) = eik·r190

in a box with periodic boundary conditions. Because this course is aimed at condensed191

matter physicists, we will use a plane-wave code.192

A full list of existing DFT codes, with their preferred basis set, is maintained on193

Wikipedia [4].194

2.2 Which functional?195

In Sec. 1.3 we introduced some basic ideas regarding the precise shape of the functional.196

We separated the kinetic energy of a noninteracting gas and the Hartree-Fock interaction197

energy from the exchange-correlation functional. Here we will discuss in more detail some198

possible exchange-correlation functionals that have been proposed, without any attempt199

at being encyclopedic.200

It is known – see for example the textbook [5], chapter 5 – that the energy of the201

homogeneous electron gas can be expanded in powers of the Fermi momentum kF ∼ n1/3.202

Kohn and Sham [2] suggested to use these analytical results for the exchange-correlation203

functional, which is now known as the local density approximation (LDA).204

A natural next step is to have a functional that not only depends on the density205

n(r) but also on its derivative ∇n(r). Such functionals are known as generalized gradient206

approximations (GGA). [6] A popular version of a GGA functional is the Perdew–Burke-207

Ernzerhof functional (PBE) [7] - its publication is cited more than 100000 times! In this208

work we will use the PBE functional, since it reproduces experimental band-structures209

relatively accurate.210

2.3 Pseudopotentials211

Are we ready to start computing? Well, not yet. If we are interested in doing DFT212

for a crystal, we would give our code the size of the unit cell, the type of atoms and213

their positions. For example, silicon has an fcc crystal structure with two atoms per unit214

cell. Silicon itself is element number 14, which means there are 28 electrons per unit cell.215

However, both physically and numerically it is nonsensical to include all 28 electrons in216

our calculation.217
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Physically speaking, the electronic configuration of silicon is Ne 3s2 3p2. The core218

electrons, given by the electronic configuration of neon, are completely irrelevant in the219

physics of binding a silicon crystal. Numerically, the fact that a bare atomic core has220

a diverging potential 1/r creates a lot problems. Both these problems can be solved by221

putting a pseudopotential at the position of the silicon atoms. A pseudopotential is a222

smeared-out potential that includes the charge of the physically irrelevant core electrons,223

that is therefore more numerically stable than the diverging 1/r potential of a bare atomic224

core. Using a pseudopotential for silicon, for example, means you now do DFT with only225

the four outermost electrons, known as the valence electrons.226

Like with the choice of functional, there are many different ways to compute a pseu-227

dopotential. In fact, most pseudopotentials are tailored to work with certain functionals,228

so in these notes we will use pseudopotentials that work well with the PBE functional.229

2.4 Quantum ESPRESSO230

Now we are ready to select a DFT implementation. In these notes we will use the open-231

source plane-wave DFT code Quantum ESPRESSO (http://www.quantum-espresso.232

org/). Its development was started in Trieste, Italy, but has by now many contributors233

from all around the world. If you ever use Quantum ESPRESSO scientifically, make234

sure you explicitly acknowledge the code and cite their original journal publications [8,9].235

Our first task is to install Quantum ESPRESSO on your own computer. The sim-236

ulations we will do in these lecture notes are light enough that they can be done on a237

standard laptop.238

The full source package of Quantum ESPRESSO can be downloaded from239

https://www.quantum-espresso.org/download240

If you are comfortable doing so, you can install Quantum ESPRESSO using the source241

package. Otherwise, on the above webpage you will also find links for stable binaries for242

typical platforms such as Windows. For Mac OS X I recommend using MacPorts (https:243

//www.macports.org/), which has a port called quantum-espresso. It automatically244

takes care of dependencies, such as OpenMPI and Fortran libraries.245

2.5 Materials Cloud246

We will use the pseudopotential libraries collected by Materials Cloud, [10, 11] an online247

tool and repository for doing DFT calculations developed by the EPFL and the ETH.248

On their website, they have collected various pseudopotentials, benchmarked them, and249

selected for each element the best choice of pseudopotential.250

We will download their collection of pseudopotentials, which are all computed for the251

PBE functional.252

1. Go to the website https://www.materialscloud.org/, and navigate to the Dis-253

cover page using the top menu.254

2. Click on Standard solid-state pseudopotentials (SSSP).255

3. You will see a periodic table (see Fig. 1). By clicking on the button that reads256

Pseudo, you will download a tar.gz file containing all the pseudopotentials.257

4. Once you downloaded the library, look into the folder. You will see files with names258

like Si.pbe-n-rrkjus_psl.1.0.0.UPF and C.pbe-n-kjpaw_psl.1.0.0.UPF. These259

are the pseudopotentials for silicon and carbon, respectively. Directly after that, you260

can see that these pseudopotentials are computed for the PBE functional.261
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Figure 1: The Standard solid-state pseudopotentials library from Materials Cloud [10, 11]
contains for all elements a choice of pseudopotential, which can be downloaded on https:

//www.materialscloud.org/.

3 Example 1: Silicon262

Silicon is one of the most abundant materials on earth, and one of the most used in modern263

technology. It is therefore logical that we start with silicon as the first material we are264

going to study.265

To start off, create a folder where we will do all of our calculations, with three sub-266

folders: silicon, out and pseudo. Then move the pseudopotential file for silicon that we267

downloaded from Materials Cloud into the pseudo directory.268

3.1 Self-consistent field269

3.1.1 Writing the input file270

Quantum ESPRESSO works with input files. These are text-only files that contain all271

the parameters that you want to give to your code. We will now build together an input272

file for computing the ground state of a silicon crystal. Note that all possible parameters273

are summarized in the file INPUT_PW.txt or INPUT_PW.html that came with the source274

package. If you are unsure on what to write, please ***275

So let’s get coding! Open your favorite plain text editor, and create a new file called276

silicon.scf.in. The input file we will create is structured with cards, of the form277

&NAME ... /.278

The first card named CONTROL describes calculation parameters.279

280

&CONTROL281

calculation = ’scf’282

prefix = ’silicon ’283

outdir = ’../ out/’284

pseudo_dir = ’../ pseudo/’285

tprnfor = .true.286

verbosity = ’high’287

8
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/288
289

• calculation decides what calculation we will do. Choose ’scf’, which is short for290

self-consistent field calculation. It is the default option of Quantum ESPRESSO.291

In the scf-mode, the self-consistent loop described in Sec. 1 is done to find the ground292

state energy and the electronic density.293

• prefix is the name of your set of calculations. This allows you to later use the294

output of this calculation in further calculations, for example to obtain the band295

structure.296

• outdir is the directory where all the detailed output files will be put, in files of the297

form prefix.xml and prefix.save, with the exception of the command line output.298

• pseudo_dir is the directory where you put the pseudopotentials.299

• The last two flags are optional. We set tprnfor true, which means the code will300

calculate and output the forces acting on the ions. This is a useful way to check301

that your proposed crystal structure is stable. We also set verbosity to high, which302

means the output file will contain a lot of extra information, such as the calculated303

symmetry representations of the crystal. I can really advise to run both with high304

and low verbosity and to compare the output files.305

The next card describes the system we are studying. What kind of lattice, how many306

atoms, and what are the cut-offs for our plane wave basis.307

308

&SYSTEM309

ibrav = 2310

celldm(1) = 10.2311

nat = 2312

ntyp = 1313

occupations = ’fixed ’314

ecutwfc = 30315

ecutrho = 120316

/317

&ELECTRONS318

/319
320

• ibrav selects the type of Bravais unit cell. In the case of silicon, we choose 2, which321

is the number for face-centered cubic (fcc). In this crystal structure, the lattice322

vectors are323

a1 = a/2(−1, 0, 1); a2 = a/2(0, 1, 1); a3 = a/2(−1, 1, 0), (18)

where a is the lattice constant given in celldm(1), see also Fig. 2, left side. The324

parameter celldm(1) is given in atomic units, meaning Bohr radii. A full list of325

possible Bravais lattices can be found in the file INPUT_PW.txt.326

• nat is the total number of atoms per unit cell, ntyp is the total number of different327

atoms per unit cell. In fcc silicon, there is only one type (silicon) but two atoms per328

unit cell.329

• occupations tells the code how to occupy the computed Kohn-Sham states. fixed330

means we just occupy all the states below the Fermi level and empty all the states331

above. Choose this option for insulators; however, for metals (such as graphene in332

the next section) we need a different option.333
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• Recall that Quantum ESPRESSO uses a plane-wave basis to describe the wave-334

functions. We should tell the system how many plane waves should be included in335

the calculation. This is characterized by a kinetic energy cut-off ecutwfc, which336

implies that we take all the plane waves with momenta such that h̄2|k|2
2m ≤ ecutwfc.337

The parameter is given in Rydberg units (1 Ry = 13.606 eV). On the Materials338

Cloud website, see Fig. 1, there is a suggested minimum wavefunction cut-off for339

every pseudopotential, which for silicon is 30 Ry. Making it larger makes the code340

slower, but should give a more accurate result.341

• The code not only stores the plane waves of the electronic states, but also directly342

the density distribution. Therefore a second cut-off is necessary, ecutrho. Because343

density scales as the square of wavefunctions, and the kinetic energy scales as the344

square of the momentum, we need to include a density cut-off at least four times345

ecutwfc. For our case, exactly four times suffices.346

• The card &ELECTRONS allows us to tell the system how to solve the Kohn-Sham347

equation. In our case, we just use the default values. However, we need to include348

the card!349

The third part of the input contains explicit information about the atoms: their pseu-350

dopotentials and positions.351

352

ATOMIC_SPECIES353

Si 28.086 Si.pbe-n-rrkjus_psl.1.0.0.UPF354

ATOMIC_POSITIONS alat355

Si 0.00 0.00 0.00356

Si 0.25 0.25 0.25357
358

• Below the line ATOMIC_SPECIES you list all the types of atoms that exist in your unit359

cell. In our case, it is just silicon. For each type of atom, you give its name (Si), its360

atomic mass in units of u (28.086), and the relevant pseudopotential file name.361

• After ATOMIC_POSITIONS you list the positions of all the atoms. The flag alat362

means the positions are given in cartesian coordinates in units of the lattice param-363

eter a (celldm(1)). Alternatively, one can use angstrom (cartesian coordinates in364

Angstrom) or crystal (multiples of the primitive lattice vectors). Here we have a365

silicon atom at the origin, and a second silicon atom at a(1
4 ,

1
4 ,

1
4).366

In the final part of the input we tell the code at which momentum points we will do367

the calculation.368

369

K_POINTS automatic370

6 6 6 1 1 1371
372

The simplest option is to choose the flag automatic, which generates a Monkhorst-Pack373

grid [12]. The first three numbers indicate the number of k-points in each of the three374

directions ( 6 6 6). The last three provide a possible offset in each direction: 0 means375

no offset and thus the inclusion of high-symmetry points like Γ; 1 means that you place376

the momentum points exactly in between the points generated by 0. A finer momentum377

mesh is generated if you choose 1, so that is what we will choose typically.378

3.1.2 Running the code379

Congratulations, you have now written your first DFT input file! To run it, simply use380

the following command on the command line:381

10
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pw.x -in silicon.scf.in > silicon.scf.out382

The program pw.x is the main component of Quantum ESPRESSO. It takes the input383

file silicon.scf.in and does the self-consistent calculation of the ground state energy384

and density. On most modern computers, it should not take longer than a few seconds for385

a system as simple as silicon.386

3.1.3 Reading the output387

The heavy part of the output is sent to the output directory ../out/. The human-readable388

part is saved in the file silicon.scf.out. Let’s read through it together.389

The beginning of the output file lists the properties of this calculation, many of them390

were given by your input file. Some of them were implicit, yet properly picked up. For391

example, on line 45 you can see that the program will use the PBE exchange-correlation392

functional. On line 39 we read that we are going to use 4 Kohn-Sham states, with spin393

degeneracy this corresponds to 8 electrons per unit cell. After that follows properties of394

the crystal structure, including its symmetries, and the list of momentum points in our395

grid.396

Just before the actual calculation starts, the program estimates the amount of mem-397

ory needed for this calculation, in the line Estimated max dynamical RAM per process.398

This might be useful to know for more complicated crystal structures, but for silicon this399

poses no problems.400

Between the lines Self-consistent Calculation and End of self-consistent calculation the401

self-consistent DFT loop is iterated until we have reached convergence. After this, the file402

contains for each momentum point the resulting energies of the Kohn-Sham states. This403

is directly followed by:404

405

highest occupied level (ev): 6.2506406

407

! total energy = -22.83862400 Ry408
409

This is the main output of a DFT calculation: the ground state energy. For clarity, the410

code also includes the energy of the highest occupied level. This is not exactly the same as411

the Fermi level, because there might be occupied states with a higher energy at momentum412

points that were not included in your momentum grid.413

3.2 Homework: Find the lattice constant and bulk modulus of silicon414

a. The ground state energy by itself is not a measurable quantity. However, one of the415

ideas of DFT is that we can find the lattice constant of a crystal by calculating the ground416

state energy as a function of the input lattice constant, E0(a). The predicted actual lattice417

constant is where this function is minimal. So can you predict with your DFT code the418

lattice constant of silicon?419

Hint: Write a code that automatically generates input files with different values of the420

lattice constant a. Then extract the total energy for every value of a.421

b. In the previous exercise you calculated the function E0(a). The change of energy422

under uniform compression is characterized by the bulk modulus. What is the value of the423

bulk modulus you calculated?424

3.3 Bands425

Strictly speaking, the Kohn-Sham energies do not correspond to anything physical. How-426

ever, it turns out that they are a pretty good approximation to the electron band energies427
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Figure 2: Left: Crystal structure of face-centered cubic silicon. Right: Band structure
of silicon as computed using the steps of Sec. 3.3.

of weakly interacting materials. Therefore it is instructive to calculate the Kohn-Sham428

energies for many points in the Brillouin zone, to get a sense of silicons band structure.429

A calculation of the bands can only be done after you finished a self-consistent field430

calculation with the same parameters . This is because the bands calculation takes the431

electronic density (and thus the Kohn-Sham potential) obtained in an scf calculation,432

and recomputes the Kohn-Sham energies for a new set of chosen momentum points. A433

good starting point for the bands calculation input file is therefore to copy the scf input434

file to a new file called silicon.bands.in. If you want to write your own bands file from435

scratch, make sure it has the same prefix as the previous self-consistent field calculation.436

At three points, we will change this new input file. First, we need to tell the code that437

we want to calculate the band structure, so replace the calculation line with this:438

439

calculation = ’bands ’440
441

For an insulator or semiconductor like silicon, the default setting is that only occupied442

bands will be computed. If we are interested in the band gap, we also need to calculate443

the unoccupied bands. To achieve this, add to the &SYSTEM card a line that says we want444

to calculate 8 bands:445

446

nbnd = 8447
448

The final change we need is to the momentum point grid. A customary way to visualize a449

bandstructure is to choose a path in the Brillouin zone and compute the bands along this450

path. This can be done by the command tpiba_b, which means that the K_POINTS are in451

units of 2π/a. The subscript _b indicates that we can define a path for a bandstructure452

calculated. For a path L – Γ – X – W – Γ, we replace the old K_POINTS card by453

454

K_POINTS tpiba_b455

# tpiba_b = k-points in units of 2pi/a, in format for band calculation456

# number of k-points (use high -symmetry points only)457

5458

# kx , ky , kz , n. of points between this and next one459

0.5 0.5 0.5 20460

0.0 0.0 0.0 30461

0.0 0.0 1.0 30462

0.0 1.0 1.0 30463

0.0 0.0 0.0 0464
465

Notice that here we added some comment lines (the one starting with #). These will be466

ignored by the code, and can be useful for our own understanding of the input files. Here,467

12
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the comments explain us that we have a path with 5 momentum points, and that we have468

20 momentum points in between L and Γ, and so forth.469

We can run the bands calculation with this command,470

pw.x -in silicon.bands.in > silicon.bands.out471

It might take a few seconds longer than the scf calculation, because we have more mo-472

mentum points.473

The output file silicon.bands.out starts out with listing the parameters of the cal-474

culation. After the line Band Structure Calculation it will calculate the Kohn-Sham475

energies of each desired momentum point. At the end of the calculation, you will find lines476

looking like this:477

478

End of band structure calculation479

480

k = 0.5000 0.5000 0.5000 ( 754 PWs) bands (ev):481

482

-3.3153 -0.6624 5.1803 5.1803 7.9984 9.7300 9.7300 14.1551483

484

k = 0.4750 0.4750 0.4750 ( 748 PWs) bands (ev):485

486

-3.3519 -0.6101 5.1849 5.1849 8.0036 9.7355 9.7355 14.1635487
488

It signals the end of the calculation, and then it will list for each momentum point all489

the Kohn-Sham energies in eV. The momentum points themselves are given in units of 2π
a490

where a is the lattice constant (celldm(1)).491

The Quantum ESPRESSO code itself comes with a set of post-processing tools, one492

of them allows you to plot the band-structure thus calculated. You can also import the493

output file into your favorite tool (Python, Mathematica, Matlab, GNUplot) and plot it494

there. The resulting band-structure is shown in Fig. 2, right. Notice it is very similar to495

the actual band-structure!496

The band gap calculated using this code is about 0.8 eV, significantly smaller than the497

actual band gap in silicon of about 1.1 eV. This is common among DFT calculations of498

semiconductors. On the other hand, many qualitative features – including the fact that499

silicon has an indirect band gap – are reproduced with our simple calculation!500

3.4 Try at home501

Congratulations, you have successfully predicted the properties of a material, purely from502

first principles! To get comfortable with this technique, try some other three-dimensional503

semiconductors, and calculate their lattice constant and band-structure.504

1. First try other zincblende structures like C-diamond, β-SiC, and GaAs.505

2. Next, calculate a different crystal structure: rock-salt NaCl. Can you find in506

PW_input.txt how to program its simple cubic structure?507

3. Finally, study hexagonal α-SiC. Which one has a lower ground state energy, α- or508

β-SiC?509

4 Example 2: Graphene510

The study of silicon in the previous section allows you to calculate crystal and electronic511

band structures of any three-dimensional semiconductor. In the remainder of these notes,512
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we will switch gears and introduce a few new concepts: we discuss how to deal with metals,513

with two-dimensional materials, and how we can optimize the structure within a unit cell,514

and how to have more complicated unit cells.515

Graphene is a perfect material to do this. It is, as you know, a two-dimensional516

semi-metal with a hexagonal unit cell.517

4.1 Compute the band-structure518

As with the silicon, we need to write input files for a self-consistent calculation first. Make519

a new folder graphene and start an input file named graphene.scf.in. The first card,520

&CONTROL, is the same as in the silicon case but with only the prefix changed to graphene.521

The &SYSTEM card will have some significant changes. Let’s write it out in its full522

totality,523

524

&SYSTEM525

assume_isolated = ’2D’526

ibrav = 4527

celldm(1) = 4.65528

celldm(3) = 6529

nat = 2530

ntyp = 1531

occupations = ’smearing ’532

smearing = ’mv’533

degauss = 1.5000000000d-02534

ecutwfc = 45535

ecutrho = 180536

/537

&ELECTRONS538

/539
540

• In the standard DFT implementation, we have periodic boundary conditions in all541

three direction. The command assume_isolated = ’2D’ ensures that there is no542

periodicity (neither in the charge density nor in the Coulomb interactions) in the543

z-direction.544

• Graphene has an hexagonal lattice, which has ibrav = 4. The lattice vectors are545

given by546

a1 = a(1, 0, 0); a2 = a(−1
2 ,
√

3
2 , 0); a3 = a(0, 0, c/a), (19)

where as before a =celldm(1) in Bohr, and c/a =celldm(3) is the ratio between547

the horizontal and vertical lattice size. The value for celldm(3) should be such548

that, for our 2d set-up in graphene, the vertical unit cell size should be large than549

the cut-off of the pseudopotentials – in this case at least 20 Bohr.550

• In the case of a metal or semimetal, just computing the occupied Kohn-Sham ener-551

gies is very numerically unstable. Tiny changes can lead to different shapes of the552

Fermi surface. It is therefore necessary to smear the occupations of the Kohn-Sham553

states, which is ensured by setting occupations = ’smearing’. We then also need554

to set which type of smearing we will use; here we opted for Marzari-Vanderbilt (mv)555

smearing [13], with a width set by degauss in Ry units.556

• Notice we changed the wavefunction and density cut-offs.557

The last part of the input file tells us where the carbon atoms are going to be, and558

our choice of momentum points. The only subtleties are in the placement of the carbon559
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Graphene band structure

Figure 3: Left: The honeycomb crystal structure of graphene. Right: Band structure of
graphene with the Dirac cone clearly visible.

atoms, see Fig. 3, left, and in the choice of K_POINTS: because we have a two-dimensional560

system we only need one momentum point in the z-direction.561

562

ATOMIC_SPECIES563

C 12.0107 C.pbe-n-kjpaw_psl.1.0.0.UPF564

ATOMIC_POSITIONS alat565

C 0.000000 0.000000 0.000000566

C 0.000000 0.5773503 0.000000567

K_POINTS automatic568

9 9 1 1 1 1569
570

Run the self-consistent field calculation by571

pw.x -in graphene.scf.in > graphene.scf.out572

The next step is to make our bands calculation input file. Like before, we can just copy573

the scf input file to a new file graphene.bands.in. Make sure you change the type of574

calculation, and the list of K_POINTS. For the latter, I suggest a path Γ – M – K –575

Γ. Because K and M are particularly easily expressed in terms of the reciprocal lattice576

vectors, we write the K_POINTS in units crystal_b:577

578

K_POINTS crystal_b579

4580

0.000000 0.000000 0.000000 40581

0.500000 0.000000 0.000000 20582

0.333333 0.333333 0.000000 40583

0.000000 0.000000 0.000000 0584
585

In the silicon case we explicitly asked the code to compute more than just the occupied586

bands, using nbnd. Because we are computing a (semi)metal, using the smearing flag, the587

code automatically calculates some unoccupied bands as well. We do not need to specify588

the number of bands nbnd.589

As before, the bands calculation can now be run by the command590

pw.x -in graphene.bands.in > graphene.bands.out591

The resulting band-structure, with the characteristic Dirac cone at the Fermi level, can592

be seen in Fig. 3.593
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WSe2 band structure

Figure 4: Left: Crystal structure of WSe2. Right: Final band-structure with spin-orbit
coupling, with a sizeable spin-orbit splitting at K of ∆v

SOC = 0.4 eV.

5 Example 3: WSe2594

The third and final materials that allows us to learn some new features of DFT is the595

two-dimensional material WSe2. In-plane it has a honeycomb lattice structure, with on596

one sublattice the W atoms, and on the other sublattice two Se atoms, displaced in the597

positive/negative z-direction, as shown in Fig. 4, left. Using lattice relaxation calculations,598

we will be able to find the exact displacement of the Se atoms. Furthermore, WSe2 is a599

semiconductor with sizeable spin-orbit coupling, and we will show how to include that.600

5.1 Relax601

In a relaxation calculation, the DFT code not only computes the ground state energy but602

also the derivative of the energy with respect to atomic displacements. This corresponds603

to the forces acting on each atom. If your initial guess of atomic positions is not stable,604

there will be nonzero forces. The code will suggest a new set of atomic positions based605

on the direction of those forces. By repeating this until you have no more forces acting606

on the atoms, you have relaxed the structure and minimized the ground state energy. We607

will use this feature to calculate the position of the Se atoms in monolayer WSe2.608

As before, we start by making a new folder wse2 with in there an input file, which we609

will call wse2.relax.in. We will calculate the position of the Se atoms, using a relax610

calculation. The first card of the input file therefore contains the lines611

612

calculation = ’relax ’613

prefix = ’wse2’614
615

In the &CONTROL card we can also include a force convergence threshold forc_conv_thr,616

which determines how close to zero we want the final forces to be. In our simple calculation617

we only need to use the default value, so we do not need include it in our input file.618

The remainder of the input file looks like this:619

620

&SYSTEM621

assume_isolated = ’2D’622

ibrav = 0623

nat = 3624

ntyp = 2625

occupations = ’fixed ’626

ecutwfc = 30627

ecutrho = 120628

/629
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&ELECTRONS630

/631

&IONS632

/633

ATOMIC_SPECIES634

W 183.840 W_pbe_v1.2.uspp.F.UPF635

Se 78.960 Se_pbe_v1.uspp.F.UPF636

ATOMIC_POSITIONS angstrom637

W 0.000000 0.000000 0.000000 0 0 0638

Se 0.000000 1.919689645 1.500000 0 0 1639

Se 0.000000 1.919689645 -1.500000 0 0 1640

K_POINTS automatic641

8 8 1 1 1 1642

CELL_PARAMETERS angstrom643

3.32500000 0.0000000000 0.0000000000644

-1.66250000 2.8795344676 0.0000000000645

0.00000000 0.0000000000 32.0000000000646
647

• In the &SYSTEM card, we reverted back to fixed occupations since WSe2 is a semi-648

conductor. Notice how we changed the cut-offs and the number of atoms and types649

of atoms.650

• Because we are interested in the atomic positions, it is worthwhile to write out the651

lattice vectors and the initial atomic positions explicitly in units of Angstrom. We652

can do so by selecting ibrav = 0, meaning we have a free form of the unit cell.653

We should then explicitly write out the three unit vectors in a new card called654

CELL_PARAMETERS.655

• We are interested in finding the z-position of the Se atoms. We know already that656

their in-plane coordinates are given by the honeycomb lattice, which are given as657

the second and third column of the lines after ATOMIC_POSITIONS angstrom. In658

the third column we put the z-position. We set W at z = 0, and we guess an659

initial distance of the Se atoms at z = ±1.5 A. The last three numbers indicate660

which atomic position coordinates we will relax . For the Se atoms, 0 0 1 means661

we keep the x, y coordinates fixed, and will minimize the ground state energy with662

respect to the z-coordinate.663

• We do need to include a new card &IONS, where we can specify the properties of664

the atomic displacements the code will do. Having this card empty just means we665

choose the default values, but for a relax calculation it has to be there!666

Run the pw.x code as usual. In the output file wse2.relax.out you can see the two667

self-consistent loops. Given a set of atomic positions, the ground state energy and forces668

are calculated. If the forces are larger than the threshold, a new set of atomic positions is669

proposed after the line saying ATOMIC_POSITIONS. After a few iterations, we have reached670

convergence and we find the following lines containing the final coordinates:671

672

Begin final coordinates673

674

ATOMIC_POSITIONS (angstrom)675

W 0.000000000 0.000000000 0.000000000 0 0 0676

Se 0.000000000 1.919689645 1.678711660 0 0 1677

Se 0.000000000 1.919689645 -1.678711660 0 0 1678

End final coordinates679
680

We predict the distance between the two Se atoms to be 3.36 Å.681
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5.2 Spin-orbit coupling682

In the above lattice relaxation calculation we did not take into account spin-orbit coupling.683

In general, spin-orbit coupling becomes more important the heavier the element is, which684

in our case applies to the tungsten (W). Because spin-orbit will likely not influence the685

position of the Se atoms, we take the atomic positions from the previous calculations and686

do the standard scf followed by bands to calculate the bandstructure of WSe2. Only this687

time, we will have spin-orbit coupling.688

Make the wse2.scf.in and wse2.bands.in input files. You can combine the elements689

from the wse2.relax.in and graphene.bands.in. Make sure you copy the atomic posi-690

tions from the previous relax output file into our new input files. To turn on spin-orbit691

coupling, we need to add the following two lines to the &SYSTEM card:692

693

lspinorb = .true.694

noncolin = .true.695
696

The first term turns on spin-orbit coupling, and the second allows for noncollinear spins697

(so not only up and down but also superpositions). Additionally, we need to have a698

fully relativistic pseudopotential to study spin-orbit coupling . In the W pseudopotential699

we have used so far, you can find the following line:700

701

The Pseudo was generated with a Scalar-Relativistic Calculation702
703

Because Scalar-Relativistic implies no spin-orbit coupling, we need to find a new pseu-704

dopotential that is fully relativistic! Many different types of pseudopotentials can be down-705

loaded from the Quantum ESPRESSO website. Go to https://www.quantum-espresso.706

org/pseudopotentials/ps-library/, and download a full relativistic ultra-soft pseu-707

dopotential (USPP) for tungsten (W) that works with the PBE functional. After that,708

update the line in the input files where you give the pseudopotential:709

710

ATOMIC_SPECIES711

W 183.840 W.rel-pbe-spn-rrkjus_psl.1.0.0.UPF712
713

Finally, the amount of valence electron per W is 14 and per Se is 6, meaning the code714

computes 26 electrons. If you want also to see the conduction bands, I suggest putting715

nbnd = 32 or higher.716

As before, run the scf first, followed by a bands calculation. You can check in the717

output files that the number of Kohn-Sham energies is now equal to the number of elec-718

trons. Before we included spin-orbit coupling, the spin degeneracy meant we just needed719

half the amount of Kohn-Sham energies.720

The final band structure is shown in Fig. 4, right. As before, the band gap (here721

about 1.3 eV) is smaller than experimentally detected (1.7 eV in monolayers). Notably,722

the valence band at the K point is split due to the spin-orbit coupling, with a splitting of723

∆v
SOC = 0.4 eV, comparable to what is measured in experiments. [14]724

6 Further reading725

You now have learned the basics of how to compute crystal structures and electronic726

bands using density functional theory, implemented in the plane-wave tool Quantum727

ESPRESSO. But there is much more to DFT than just this. There are some additional728

tools that we haven’t discussed, such as the possibility to compute phonon dispersions,729

Raman or optical spectra, and wannierization. We also haven’t looked into modern de-730

velopments of functionals, such as the inclusion of Van der Waals interactions or strong731

correlations (LDA+U, GW or DFT+DMFT).732
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Luckily, there are many online courses available that are more in-depth than this short733

ToolBox.734

• The Materials Cloud webpage also contains a set of lectures, including notes, ex-735

ercises and videos, on how to do DFT with Quantum ESPRESSO. You can find736

them here: https://www.materialscloud.org/learn/.737

• Many universities have their classes on density functional theory online, for example738

MIT has https://ocw.mit.edu/courses/materials-science-and-engineering/739

3-320-atomistic-computer-modeling-of-materials-sma-5107-spring-2005/labs/740

sections741

• The source manual of Quantum ESPRESSO named pw_user_guide.pdf, which742

comes with downloading the source package, contains a lot of information on what743

you can do with the code. The source package also contains examples on how to use744

the code, see the folder PW/examples for input files and ideas for pw.x. You can also745

look at examples of other parts of the code, such as PHonon/examples, that show746

you how to compute phonon dispersions.747
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